LA-UR -g3-321 Conr 93
h \

Los Alamos National Laboratory 1s operaled by the Unr.ersiy of California for the United Siates Depariment ol Energy under coniract W-7405-ENG-36

TITLE: SAMPLE: SOFTWARE FOR VAX FORTRAN EXECUTION TIMING

AUTHOR(S) Lewis H. Lowe, Analysis and Testing Group (WX-11)

HIRKIT TED 1O

DECUS, Fall 1983 U.S. Symposium Proceedings

DISCLAIMER

‘This report was prepared as an necount of work sponsored by un ugency of the United States
CGovernment, Neither the Unite! * intes Guvernment nor any agency thereof, nor any of their
cmployees, makes any wartanty, cxpress or implied, or assumes any legal linhility or 1exponsi-
hility for the ncewrscy, completeness, o usefulness of uny information, apparatus, product, ur
provess dhisclosed, or represents that itx use would not infringe privately owned rights. Refer-
ence hercin to any specific commercinl product, process, ur service hy trade name, trudemnrk,
manufaciurer. of otherwise does nol necessarily constitute of imply its endorsement, recom-
mendution, or favoring by the United Staten Government or . y agency thereof. The viewn
and opinions of authors expressed herein do not necenanrily state or reflect those of the
United Stotes Government or any agency thereof.

LLEFTRNEY s Vige o \
v bhaber togogodes that the U S Governmnnt selams Ly poneag lusivee Toyilty lee g niae (o pubhsh of reprnguace
St e e b pllow others oo de so hor LG Giovernment purposes

e Wt the pablhee ooty (e prtc e s waork perforened gndoet the auspe o of the U % Departmant of | nergy

' 1
EARE N
\ SIS e
HEON 1 s M

"'I'"'.f)

.
S A\]m YA N Los Alamos National Laborator
A I ZARN l]. ”ﬂ]@)\g Los Alamos,New Mexico 8754%

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

SAMPLE: SOFTWARE FOR VAX FORTRAN EXECUTION TIMING

Lewis H. Lowe
Analysis and Testing CGroup (WX-11)
Los Alamos National Laboratory
Los Alamos, New Mexico

ABSTRACT
SAMPLE 1s a set of subroutines in use at the Los Alamos
Nationa! Laboratory for collecting CPU timings of various
FORTRAN program sections--usually individual subroutines,

These measurements have been useful in making programs run

faster,

The presentation includes a description of the software and

examples of its use.

The software is available on the directory [SAMPLE] of the

VAX SIG tape.

INTRODUCT ION

When the use of a computer increases, generally
the response time Increases and programs take
longer to run. When this happens, frequently-used
programs should be examinea to see whether they
can be made more efficient,

One approach to code optimization 1s to lcoak
through a listing for code structures that .re
obviously wasteful. It is better, however, to
determine what sections of code require the most
CPU tim . and put effort into optimizing those
sections. For cxample, one can never get a five
percent execution speedup by optimizing a section
thet requires only one percent of the execution
time.

A subroutine 1ibrary called SAMPLE, used to find
the CPU lime required by a section of code, 1S
described here as well as a program called PROBL,
which places SAMPLL routine calls at the entry and
exit of each subroutine and function,

The sources for SAMPIT and PROBL. as well as the
SAMPLL Vibrary, the PROBE executable, and a READM.
file, arce available on the directory [SAMPLE] of
the VAX S1G tape.

L SAMFLE LIBRARY

SAMPLL consists of five subroutines: SAMPIN and
SAMPDL inftialize and toerminate the wampling
process; SAMPON, SAMPOE, and SAMPSK determine the
currently actave sectfon of code, Array storage
fs an 4 common block SAMPRK, whose length in
Tongwords mist be at leant five times the number
of wections to be twned, The required declaration
and calls are shown in Tia. 1 for a program
divided into three sections - input, moress, and
oulput -« with the inpyt section nested in the
process sect ion,

Figur: 1. Use cf the SAMPLE Rouiines.

COMMON /SAMPBK/ 'DUMMY(15)

CALL SAMPIN(3)

CALL SAMPON(BHPRCCESS)

CALL SAMPON(BHINFUT)
(INPUT CODE)

CALL SAMPOF
(PROCESS CODE)

CALL SAMPSW(8HOUTPUT)
(OUTPUT CODE)

CALL SAMPDI(6)

[ND

SAMPIN(MX) must be called to initialize storace.
The argument is an upper limit on the numbe- of
sec&ionu.

SAMPOR(NAME) 1s called to begin timing of a new
section. The name of the current section s
retained on 3 stack. The arqument is an eight-
character ficld that names the new wection,

SAMPOF 1s called to end timing for the current
section, and begin timing the section on the top
of the stack; there is no arqument,

SAMPSW(NAME) 15 called to begin Uiming of a new
sectton without retaining the name of the
current section, A call to SAMPSW fr like &
call to SAMPOE followed hy a call to SAMPON but
more officient, The ardument iy the esfght-
character name of the new seoctfon,

SAMPDL(LI) 1w called to terminate timing and
dinplay the results, as shown in bige, @ ane 4,
The arqgument s the Teqrcal unyt number to which
the data will be writtoen,

The display contaany the name of rach wect ion
encaunternd, a0 alphabetwcal order . The

"samples® coiumn contains the number cof ten-
millisecond clock ticks apparently charged to the
section; the "count® column contains the number of
calls to either SAMPON or SAMPSW with the section
name as the argument. The "X" column contains an
estimate of the percentage of total cpu time used
by the section, rounded to the nearest unit, The
data used to compute percentages and the estimated
CPU time are adiucied in an attempt to subtract
off the sampling overhead.

Please note that a section name will not appear in
the display unless that section's name appears as
the argument of a SAMPON or SAMPSW call.

THE PROBE PROGRAM

A program called PROBE will read a "ORTRAN input
file and insert SAMPLE calls that set up sections
corresponding to subroutines and functions. PROBE
will prompt for the input file name (typed without
extension) and logical unit number to which the
display will be written, separated by a comma.

One pass through the data is made to count the
number of programs, functions, subrecutines, and
entries; at the same time the identifier for each
of these blocks i{s typed. After the 1list of
identifiers, the number of programs, functions,
subroutines, and entries is typed.

A second pass through the data is made to write
the new file.

In cach program, the common block SAMPBK s
dectared before the first declaration. Also a
call to SAMPIN is placed before the first exe-
cutable statement, If the STOP or CALL EXIT
occurs in a logical IF statement, an .F - THEN
block is set up.

In each subroutine or function subprogram, a call
to SAMPON iy placed before the first executable
sltatement and 4 call to SAMPOF {s placed before
cach RLTURN statement, Aqain, the RETURN state-
ment mdy appear in a logical IF statement,

Each ENTRY statement s followed by a call to
SAMPON and preceded by a call to SAMPOF, In case
the INIRY s unreachable, (for example, immnedi-
ately following a RLTURN «catement) the compiler
will warn that the CALL SAMPOE statement cannot be
reached, This warning may be fqnored.

PROBEL has been used on several programs weitten by
diifevert programmer s, but Yt cannot handle all
PORTRAN TV-PLUYS programs. Some possible problems
Are;

Unurual blanks, for example,

no oty 1-1.4

S ORETIN, 0P, e CALL EXTT dna statement
Tabelod ty a 0O loop terminator

* I bamat ton mark () comments

O INCLLIY P)ew containing executanle

statements,,

CASE STUDY 1: 3D MESH CONVERTER

PROBE was used to gather statistics from a
utility called SPIN12, which produces a 3D
finite elemunt description by spinning a 2D
description about the 2 axis,

The display Is shown in Fig. 2. Most of the
time is required by SPIN12, the main proyram;
the only other significant user is PREQ2, which
converts a 2D element 1into a ring of 3D ele-
meniS. Because the main program is straight-
line code and PREO2 contains nested loops, the
latter was chosen as the optimization candidate.

The subrcuiine has a loop to read 2D elements
and an inner loop to write the number of 3D ele-
ments requested by the user. The 1{nner loop
contains a test on a fixed value, and some
processing on data which changes only in the
outer loop. Jt was a classic and straigat-
forward optimization to take the invariant I[F
test out of the loops, and move the processing
of constant data out of the 1inner loop. The
result of these changes is displayed in Fig. 3.
The improvement 15 measurable but less than
sat tsfactory.

Figure 2. Data Typed by SAMPDI for SPIN12.

Estimated Original Execution Time 74,43,

Interval Samples X Count
FREFIN 4 0 q
IGEiCR 63 1 209
NEWNOD 1887 4 19440
PREO2 2576 3h 4
SPINL2 4486 60 1

Figure 3. SPIN1?, Before and After.

.t Before Ater Improvement
Clock Time 1:13.08 1:07.1 %
CPU Time 1:09.07 1:06.49 [$1
Page Taults 22! 1766 1%

CASE STUOY 25 MODILING PROGRAN

The next code considered was JLNNY, which models
wentinuous systems from thear differential
equattons. Figure 4 shows the display for this
program, The two most expensive subprograms,
EXPRES and PUTIT, were considered for optimi-
zat fon.

EXPRES i anvoked to scan an expression that s
part of A A00-character dnput butter, There iy
no end-of-lTine tpformatyon in the but fer, and no
Tine Tength; the buffer fs merely blank {1V Ing,
On tinding a hank, the o taynal code tested fo

columy 400 f the end of the line had not hoen
roached, the next column was examined, Ac g
vesult, many operations were required Lo detect
the end of o line, tThe moditied (ode, on
tinding o blank, testy whether the remainder of
the Ttne s hlank 3t w0, the Tine oy fintshed,

PUTIT is a very simple subroutine to enter a
character string into a buffer. It contained a
form of WHILE loop to find the last ronblank
character in the string. This loop was replaced
by a FORTRAN 77 DO loop with negative increment;
similar changes were made throughout the program,

The results, shown in Fig. 5, are quite pleasing.

Figure 4. Data Typed by SAMPDI for JENNY,

Estimated original execution time 2.3l

Interval Samples X Count
DATA, 3 1 1
DECLARV 3 1 1
ENAME 2 0 9
EXPRES 17 3l 74
FETCH 14 4 59
FINAL 2l 9 1
GETLIN 23 9 26
GETSYM 18 0 257
I 5 2 1
ICOTRM 0 0 1
ICLTRY 0 0 1
JENNY 14 6 1
NAMELU 30 5 231
PREPAR 1 0 24
PROTRM 8 3 22
PuTILT 64 12 454
RIC 1 0 l
SETUP 0 0 l
SOLVEV 6 3)
SVIERM 9 4 7
SVIMFC 0 0 2
SVIMTM 26 10 28

Figure &% JENNY: Before and After.

Before After Improvement s
Clock Time- 0:03.18 Qo2 n 15%
CPU Time 0:00.20 0:01.84 16%
Page taulrs 00 186 %

In ardor to test the consistency of the data,
PROBE. and SAMPLE were used Lr measure a simple
progran compet ing with interactive programs. The
program consists of 1000 calls to ecach of lwo ~ub-
routynes, The first sybroutine perform. 1000
invocatfons of AMAXL: the second, 1000 invocat tons
of SURT,

Figure 6 sh wy the disteibation of estimated CPU
timewy they all fa)l within 1 percent of 18,54
seconds,

Fiaure 7 shows the distribut fon of the fract ton of
the time e ctred by the farst sobroutine, the
extreme value fally mre than b0 percent sbhove the
medtan of A0 percent,

Good agresment of the former data todaethem with
rather poor agreement of the latter sougests that
the sampling tnterval (10 mi)l tspconds) 14 ton
Tong,

Figure 6. Distribution of Estimated CPU Times,
Tame Lount

18.39
18.41
18.47
18.50
18,54
18.55
18.58
18.64
18.69

—) 3=t =2 = P pd b b

Figure 7. Distribution of Percent Time in
Subroutine 1,

Percent

o0
o
[=4
=]
s

28
29
30
3l
32
34
46

—— e R W —~ I

CONCLUSIONS
SAMPLE and PROBE have proved useful! 1in deter-
mining what parts of a program should be con-
sidered for optimization.

It is the author's conclusion that the data
produced would h2 more useful if the CPU charqe
informat{on were available in increments of .ess
than 10 ms,

Finally, traattional optimization methods, such
as pulling arithmetic out of loops, appear to be
Tess eoffective than replacing i{mplicit laops
with modern D0 loops, which Include fero-trip
testing and negative increments,

